¹ DRAFT VERSION MARCH 27, 2023 Typeset using IAT_EX **preprint2** style in AASTeX631

DRAFT (Rev. 1.5) NSClean: An Algorithm for Removing Correlated Read Noise from JWST NIRSpec Images

2	Bernard J. Rauscher ¹⁰
3	¹ NASA Goddard Space Flight Center
4	Observational Cosmology Laboratory
5	8800 Greenbelt Road
6	Greenbelt MD 20771, USA
7	Cite as Rauscher, B.J. (2023), PASP, in preparation
8	ABSTRACT
9	NSClean is an algorithm and associated python package for removing faint vertical
10	banding and "picture frame noise" from JWST Near Infrared Spectrograph (NIRSpec)
11	images. NSClean uses known dark areas to fit a background model to each exposure
12	in Fourier space. When the model is subtracted, it removes nearly all correlated noise.
13	Compared to simpler strategies like subtracting the rolling median, NSClean is more
14	thorough and uniform. NSClean is computationally undemanding, requiring only a few
15	seconds to clean an image on a typical laptop. The NSClean package is freely available
16	for download from the NASA JWST website (NASA JWST website 2023).

17

1. INTRODUCTION

¹⁸ JWST is today's premier observatory for mid ¹⁹ and near-infrared (NIR) space astronomy. To ²⁰ enable science objectives cutting across astro-²¹ physics, JWST carries a suite of four science ²² instruments: a Near Infrared Camera (NIR-²³ Cam; Rieke et al. 2022), a Near Infrared Imager ²⁴ and Slitless Spectrograph (NIRISS; Doyon et al. ²⁵ 2022), a Mid-infrared Instrument (MIRI; Rieke ²⁶ et al. 2022), and a Near Infrared Spectrograph ²⁷ (NIRSpec; Jakobsen et al. 2022). This article ²⁸ concerns NIRSpec, an algorithm and associated ²⁹ software for further reducing its already low ³⁰ noise: "NSClean". NSClean should be benefi³¹ cial to most NIRSpec Integral Field Unit (IFU)
³² and many Multi-Object Spectrograph (MOS)
³³ observers.

From early on, it was understood that NIR-34 ³⁵ Spec required ultra-low noise detectors. It is de-36 tector noise limited for all but prism-mode ob-³⁷ servations. This is in contrast to other JWST 38 instruments that are generally limited by the ³⁹ astronomical background. Consequently, NIR-⁴⁰ Spec has lower noise requirements than other "Total noise" is a con-⁴¹ JWST instruments. ⁴² cept that was introduced for JWST. To measure 43 it; one defines a standard scientific exposure, $_{44}$ takes many such exposures (typically >40), and ⁴⁵ then computes the standard deviation per pixel. ⁴⁶ Across JWST's NIR instruments, the exposure ⁴⁷ time was taken to be 1000 seconds. For NIR-48 Cam and NIRISS, median total noise was re-

Corresponding author: Bernard J. Rauscher Bernard.J.Rauscher@nasa.gov

49 quired to be $<10 e^{-1}$ per exposure. For NIR-50 Spec, the requirement was $< 6 e^{-1}$.

NIRSpec's $< 6 e^{-}$ noise requirement is the rea-51 ⁵² son why we developed Improved Reference Sam-⁵³ pling and Subtraction (IRS²; pronounced IRS-⁵⁴ square; Rauscher et al. 2017). In IRS² mode, ⁵⁵ NIRSpec uses a special clocking pattern and ref-⁵⁶ erence correction pipeline step to reduce corre-⁵⁷ lated noise as far as possible using the NIRSpec ⁵⁸ detector's built-in references. Using IRS², NIR-⁵⁹ Spec's total noise is slightly $< 6 e^{-}$ on average, ⁶⁰ and to within the uncertainties compliant with ⁶¹ requirements. IRS² is the recommended read-62 out mode for most observations except for ex-63 tremely bright targets (JWST User Documen- $_{64}$ tation website 2016).

However, even with NIRspec's detectors meet-66 ing requirements, many NIRSpec observers re-67 port seeing faint, correlated read noise in count 68 rate images that complicates calibration. For-69 tunately, for NIRSpec, much of this can be re-70 moved by using dark areas of images as refer-71 ences.

Figure 1 shows an example of the correlated 72 ⁷³ noise from an early NIRSpec Integral Field Unit 74 (IFU) observation. We have smoothed the im-⁷⁵ ages and stretched the greyscales to emphasize 76 correlated noise that would otherwise be more ⁷⁷ difficult to see against the background of NIR-78 Spec's ~ 6 electrons total noise. One sees a ⁷⁹ "picture frame" effect, whereby areas near he ⁸⁰ edges of both detectors on all four sides seem ⁸¹ less noisy. In the interiors, one sees faint verti-⁸² cal striping. While the amplitude is small, this ⁸³ correlated noise can undermine accurate pho-⁸⁴ tometry when no local sky is available. This is ⁸⁵ often the case for IFU observations and we are ⁸⁶ aware of cases where this is true also in MOS 87 mode.

NSClean uses blanked off areas of NIRSpec ⁸⁹ scenes to model the background, including cor-⁹⁰ related noise.

Because it uses more information, NSClean's 91 ⁹² correlated noise correction is more complete and ⁹³ more uniform than is possible without careful 94 masking.

2. PHYSICAL CAUSE OF THE CORRELATED NOISE

95

96

Our focus in this paper is on the specific corre-97 ⁹⁸ lated read noise that NSClean is designed to fix. 99 Readers who want to learn more about NIR-100 Spec's read noise in general may want to see ¹⁰¹ some of our earlier papers. Rauscher (2015) ¹⁰² describes the origins of NIRSpec's white and $103 \ 1/f$ noise, and provides a python package for ¹⁰⁴ simulating it. Rauscher et al. (2017) describes ¹⁰⁵ NIRSpec's IRS² readout mode. Without IRS², ¹⁰⁶ the residual correlated noise that remains today 107 would be much worse.

The correlated noise that remains after IRS^2 is 108 ¹⁰⁹ a logical consequence of how IRS² works. NIR-110 Spec uses two Teledyne H2RG NIR detector ar-¹¹¹ rays (Loose et al. 2003). Each H2RG provides ¹¹² two types of reference information that can be ¹¹³ used to remove correlated read noise. These ¹¹⁴ are the "reference pixels" that form a 4-pixel ¹¹⁵ wide frame on all sides of NIRSpec images and ¹¹⁶ one "reference output" per H2RG. The refer-¹¹⁷ ence output is not visible in the usual pipeline 118 data products, but it is used most of the time. 119 As described in Rauscher et al. (2017), IRS² ¹²⁰ is built on principal component analysis (PCA) ¹²¹ showing that NIRSpec's read noise is covariance 122 stationary to a high degree of approximation. 123 Informally, this means that the read noise is in-124 dependent of when one looks.

It turns out that in JWST's NIR detector sys-126 tems, thermal instability causes noise that is ¹ MIRI uses a different detector technology for which the¹²⁷ not covariance stationary. There is a picture 128 frame pattern that changes in time at the $\sim 1 e^{-1}$ 129 level. Rauscher et al. (2013) describe how small ¹³⁰ temperature fluctuations can drive the picture

comparison is not relevant.

Figure 1. The JWST pipeline makes NIRSpec count rate images like those shown here. This observation used NIRSpec's IFU mode which produces 30 horizontal spectral traces per detector. To highlight correlated noise, we have smoothed the images and set the greyscale roughly equal to NIRSpec's 6 electrons total noise requirement. One sees vertical banding in the central regions of both detectors. Toward the edges of both detectors, there seems to be less correlated noise. This is the "picture frame". While both types of residual noise are less than NIRSpec's total noise requirement, they nevertheless complicate calibration. For example, they can produce negative fluxes and features that mimic emission lines or continuum. NSClean fits a background model to dark areas of each exposure and subtracts it to remove picture frame noise and vertical banding.

¹³¹ frame. This is why the vertical banding that
¹³² is visible in Figure 3a seems to fade away near
¹³³ the edges. The relatively quiet edges are in the
¹³⁴ picture frame while the vertical bands are not.
¹³⁵ IRS² relies on the reference pixels to see noise
¹³⁶ in order to remove it. Since the reference pix¹³⁷ els are in the picture frame and do not see the
¹³⁸ vertical banding, IRS² is powerless to remove it.

3. ALGORITHM

139

¹⁴⁰ NSClean is built on the Fourier transform of
¹⁴¹ the instrumental background. Our treatment
¹⁴² starts in Section 3.1, by reviewing how python's
¹⁴³ numpy package implements the classical Fast
¹⁴⁴ Fourier Transform (FFT; Cooley & Tukey 1965)

¹⁴⁵ for fully sampled data. Since NIRSpec's back¹⁴⁶ ground is not fully sampled (because of as¹⁴⁷ tronomical sources), Section 3.2 explains how
¹⁴⁸ NSClean computes a statistically optimal ap¹⁴⁹ proximation to the Fourier transform using all
¹⁵⁰ available background samples.

The next two subsections describe the linear algebra that underpins NSClean. Insofar as possible, we have tried to use a consistent, standard notation. Throughout this paper, boldface lowsecase letters are vectors and uppercase boldface letters are matrices. When discussing matrix elreferences and uppercase for row indices and subscripts for column indices.

Figure 2. We used the background masks shown here for development. The underlying grayscale image is the median of a stack of illuminated IFU exposures. The 30 spectral traces per detector are clearly visible. We used the red-shaded pixels to make the background model. As described in the text, we used the GNU Image Manipulation Program (GIMP) to manually make the masks since we only needed one set to write the software. We understand that some JWST observers have already automated mask generation. They grey rectangles blank off areas of potentially illuminated (by scattered light) areas of the focal plane that we left unconstrained during background fitting.

174

179

189

For dark exposures, one can use numpy's FFT for package to compute the Fourier transform of an image column. Like all FFTs, numpy uses a highly-efficient factorization of the Fourier matrix, **F**, to solve the matrix equation,

$$\mathbf{F}\mathbf{f} = \mathbf{d},\tag{1}$$

¹⁶⁶ where **f** is the Fourier transform of the data, **d**. ¹⁶⁷ For n pixels per column, in numpy the elements ¹⁶⁸ of **F** are,

$$F_k^m = \exp\left\{2\pi i \frac{mk}{n}\right\},\qquad(2)$$

¹⁷⁰ where m is the row index and k is the column ¹⁷¹ index. Because NIRSpec's data are real val-¹⁷² ued and n = 2048 is an even number; m =¹⁷³ $0, 1, \ldots, n-1$ and $k = 0, 1, \ldots, n/2$.

3.2. NSClean's Fourier Transform

¹⁷⁵ For NIRSpec's incompletely sampled back¹⁷⁶ ground, NSClean uses weighted least squares to
¹⁷⁷ approximate Fourier transforms. The starting
¹⁷⁸ point is again equation 1,

$$\mathbf{Ff} \approx \mathbf{d},\tag{3}$$

¹⁸⁰ but now as an approximation and with the un-¹⁸¹ derstanding that \mathbf{F} , \mathbf{f} , and \mathbf{d} are incomplete. \mathbf{F} ¹⁸² is missing columns where light falls on the de-¹⁸³ tector and rows for frequencies that we choose ¹⁸⁴ not to fit. \mathbf{f} contains only a few very low fre-¹⁸⁵ quencies to minimize noise. \mathbf{d} is missing rows ¹⁸⁶ where the detector is illuminated.

¹⁸⁷ To solve equation 3 using least squares, we ¹⁸⁸ minimize the generalized distance squared,

$$\delta^2 = (\mathbf{F}\mathbf{f} - \mathbf{d})^{\mathrm{H}}\mathbf{W}(\mathbf{F}\mathbf{f} - \mathbf{d}), \qquad (4)$$

Figure 3. This figure shows the a) correlated noise that is visible in pipeline calibrated images. The actual pipeline products do not look this bad. We have adjusted the grayscale and blurred the images slightly to highlight correlated read noise. Panel b) shows the effect of subtracting the median of a few neighboring columns from each column. The NIRSpec Instrument Team prevously provided a tool to NIRSpec observers that does this. Finally, panel c) shows the NSClean result. Panels b and c are noticeably cleaner than panel a. Comparing panels b and c, panel c shows more uniform and complete background subtraction.

227

¹⁹⁰ using all available background samples. The ¹⁹¹ symbol, "H", denotes the conjugate transpose, ¹⁹² which is also known as the Hermitian transpose. ¹⁹³ A weight matrix, **W**, is required to compensate ¹⁹⁴ for non-uniform background sampling. The cur-¹⁹⁵ rent version of NSClean weights inversely by the ¹⁹⁶ local sample density squared, ρ^{-2} :

$$\mathbf{w} = \begin{bmatrix} \rho_{00}^{-2} & 0 & 0 & 0 \\ 0 & \rho_{11}^{-2} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \rho_{n'-1 \ n'-1}^{-2} \end{bmatrix}.$$
(5)

19

203

¹⁹⁸ W is diagonal and equal to it's conjugate trans-¹⁹⁹ pose. Section 3.3 describes W in more detail. ²⁰⁰ The quantity $n' \leq n$ is equal to the number of ²⁰¹ background samples. Under these conditions, ²⁰² the least squares solution to Equation 4 is,

$$\mathbf{f} = \left(\mathbf{W}^{1/2}\mathbf{F}\right)^{+}\mathbf{W}^{1/2}\mathbf{d}.$$
 (6)

²⁰⁴ The symbol, "+", denotes the Moore-Penrose ²⁰⁵ inverse. Being a Fourier transform, the quantity ²⁰⁶ \mathbf{f} is a complex valued vector. 207 Equation 6 is this section's key result. 208 NSClean uses this expression to approximate 209 the Fourier transform of the incompletely sam-210 pled background.

Figure 4 shows an example of how equation 6 211 ²¹² works in practice. Panel a) shows a vertical cut ²¹³ through NRS2, which is the most affected of the ²¹⁴ two detectors. To show detail, Panel b) shows ²¹⁵ only the innermost 1024 rows. The blue points ²¹⁶ are background samples, the orange points are ²¹⁷ pixels that the background mask marked as po-²¹⁸ tentially illuminated, and the blue line is the ²¹⁹ model built using equation 6. As a practical ²²⁰ matter, we were able to fit about nine frequen- $_{221}$ cies (≈ 16 free parameters) before we started ²²² to see increased noise due to over fitting. As ²²³ expected, the blue line passes near the centers ²²⁴ of groups of blue points. It is smooth, continu-²²⁵ ous, and very low noise compared to the pixels 226 themselves.

3.3. The Weight Matrix, \mathbf{W}

²²⁸ The weight matrix compensates for uneven ²²⁹ background sampling. Returning to Figure 2,

Figure 4.

there are often only a few rows of blanked off
background pixels between the spectral traces.
But; near the bottom, middle, and top of each
detector, there are much larger areas of background pixels. When nothing is done to compensate for the uneven background sampling,
scientifically uninteresting areas of the scene
carry far too much weight.

0

a) Cut location

As described earlier, NSClean computes the Pourier transforms of columns individually usendowing weighted least squares fits. After a bit of endowing trial and error, we found that weighting inendowing the local background sample density endowing in columns worked well. There is nothing fundaendowing that some observers will find better ones for endowing the local background sample density endowing the some observers will find better ones for endowing the local background better ones for endowing the local background better ones for endowing the some observers will find better ones for endowing the local background better ones for endowing the some observers will find be the some observers will be the some o

One could compute the local sample den-248 sity by convolving the background mask with a 249 tophat function (Figure 5). While effective, the 250 resulting weight curve is quantized in units of 251 the tophat's width. To eliminate the quantiza-252 tion while still approximating the local density, 253 NSClean convolves columns of the background 254 mask with a Gaussian kernel. In the current 255 release, the kernel's standard deviation is hard

Figure 5. This figure shows the background mask and diagonal of $\mathbf{W}^{1/2}$ along the same vertical cut through NRS2 that is shown in Figure 4a. For clarity, we show only the first 1024 rows. Mask values =1 are treated as background and mask values =0 are treated as potentially illuminated. The orange curve shows the weights that result from convolving a 65 pixel wide tophat. The green curve shows that weights derived from convolving a Gaussian kernel with $\sigma = 32$ pixels. As described in the text, NSClean uses Gauss-convolution because the resulting weights are more uniform and the weight curve is not quantized.

²⁵⁶ coded to be $\sigma = 32$ pixels. Going forward, it ²⁵⁷ may be possible to come up with something ²⁵⁸ more elegant. 32 pixels seems to work well for ²⁵⁹ many IFU observations.

3.4. Making Masks

This section describes how we made the masks 261 ²⁶² that are shown in Figure TBD.

263

4. IMPLEMENTATION

NSClean is written in python-3. We chose 264 ²⁶⁵ python for compatibility with the rest of the ₂₆₆ JWST pipeline. The current NSClean ver-²⁶⁷ sion is not computationally demanding. Teams ²⁶⁸ XX, YY, and the JWST Early Release Science ²⁶⁹ (ERS) team TEMPLATES (Rigby et al. 2023, ²⁷⁰ in prep.) have tested NSClean on typical scien-271 tific workstations and laptops and report that 272 it works well. The typical cleaning time for $_{273}$ one 2048×2048 NIRSpec image is a few seconds. ²⁷⁴ This assumes that multithreading is turned on 275 for the python linear algebra libraries as de-²⁷⁶ scribed in Section 4.2.

The current NSClean version works column-277 ²⁷⁸ by-column. Since there are only 2048 pixels per 279 column, this means that it requires very little ²⁸⁰ RAM, and the time penalty for projecting out ²⁸¹ Fourier vectors using Equation 6 is small com-²⁸² pared to using the FFT algorithm.²

283

4.1. Computing Requirements

When used in the recommended mask mode, 284 ²⁸⁵ NSClean is not computationally demanding. ²⁸⁶ The execution time on our development server is ²⁸⁷ about 6 seconds for one 2048×2048 pixel NIR-²⁸⁸ Spec image. The server, which is a few years $_{289}$ old, has $8 \times$ Intel Xeon cores running at 3.5 GHz ²⁹⁰ and 250 GB of RAM. In practice, NSClean uses ²⁹¹ only a tiny fraction of the RAM. Although our ²⁹² server has an NVIDIA Quadro M4000 GPU ²⁹³ with 8 GB of RAM, in practice we found that ²⁹⁴ NSClean's execution time was about the same ²⁹⁵ in CPUs as in the GPU. This is because Equa-²⁹⁶ tion 6 's matrices are not large when images are ²⁹⁷ processed in columns.

We have also tested NSClean on a 2019 Mac-208 ²⁹⁹ Book Pro. Execution time on the MacBook is ³⁰⁰ about 12 seconds per image. The MacBook has ³⁰¹ an 8-Core Intel i9 CPU running at 2.3 GHz and 302 32 GB of RAM. Again, NSClean did not use ³⁰³ much of this RAM. According to the Apple Ac-³⁰⁴ tivityMonitor App, peak usage was about 150 305 MB.

The NSClean prototype (the NSClean1 class 306 ³⁰⁷ in the distribution) was computationally inten-³⁰⁸ sive. In general, we find that mask mode (the ³⁰⁹ recommended NSClean class) provides better 310 correction and is much less taxing. We have ³¹¹ nevertheless left NSClean1 in the distribution ³¹² in case anybody finds it useful. For NSClean1, $_{313}$ using a GPU can provide a roughly a $>10\times$ ³¹⁴ speedup compared to CPUs. Using a GPU, ³¹⁵ NSClean1's execution time is about 3 seconds. ³¹⁶ The execution time using the server's CPUs was 317 a minute or two.

Our development server had the follow-318 319 ing software; Oracle Linux Server release 320 8.7, python-3.10.8, astropy-5.0.4, cupy-11.5.0, ³²¹ numpy-1.22.3, and pillow-9.3.0.

4.2. Multithreading

NSClean is not explicitly multithreaded. In 323 ³²⁴ practice, however, we always have multithread-325 ing turned on for python's linear algebra li-326 braries. As a result, when we run NSClean, 327 it usually shows all CPUs being used because 328 most of the work is linear algebra.

On our Intel-based computers, this is done by 329 ³³⁰ installing the Intel version of numpy and setting ³³¹ an environment variable. For our 8-core server, ³³² the python code is as follows.

import os 333

322

os.environ['MKL_NUM_THREADS']='8' 334

335 Our understanding is that on non-Intel com-³³⁶ puters, similar functionality exists, although the 337 environment variables are different.

When a GPU is used, python's cupy pack-338 ² The FFT only works for fully sampled data, which we³³⁹ age automatically parallelizes the linear alge-³⁴⁰ bra operations over however many GPU cores

do not have.

³⁴¹ are available. Our NVIDIA Quadro M4000 has ³⁴² 1664 CUDA cores. Individual CUDA cores are ³⁴³ slow compared to the server's CPUs. However, ³⁴⁴ because there are so many of them, they enable ³⁴⁵ $a > 10 \times$ speedup for NSClean1.

346 4.3. In

4.3. Installing NSClean

NSClean is a standard pip-installable python at package. It is available from the NASA JWST website (NASA JWST website 2023). To install it on MacOS or Linux, change into a directory that is in your python path, and download the distribution. Then, use pip to install it,

353 pip install — e nsclean.

³⁵⁴ This will install nsclean as an editable package³⁵⁵ in your python path.

356

5. SUMMARY

Many JWST observers are finding that there frame is faint vertical banding and a picture frame pattern in pipeline calibrated NIRSpec images. The effect is particularly challenging for IFU observations because it can add spectral fea³⁶² tures that are not real. This article describes ³⁶³ the NSClean python package that uses dark ar-³⁶⁴ eas of NIRSpec scenes to remove this noise. To ³⁶⁵ use NSClean, the astronomer must provide a ³⁶⁶ mask specifying which pixels are to be treated 367 as background. For each count rate image, ³⁶⁸ NSClean then: (1) computes the Fourier trans-³⁶⁹ form of the background using an algorithm that 370 can handle missing data, (2) applies a low-pass ³⁷¹ filter to reduce noise, and (3) inverts the Fourier ³⁷² transform yielding a background model. When ³⁷³ the background model is subtracted from the ³⁷⁴ image, it removes most of the correlated noise. 375 NSClean is simple and computationally unde-³⁷⁶ manding. The NSClean python package is freely 377 available for download from the NASA JWST 378 Website (NASA JWST website 2023).

379 This work was supported by NASA as part of 380 the JWST.

381 Facilities: JWST(NIRSpec)

382 Software: astropy (Astropy Collaboration 383 et al. 2013, 2018)

REFERENCES

- 384 Astropy Collaboration, Robitaille, T. P., Tollerud,
- 385 E. J., et al. 2013, A&A, 558, A33,
- 386 doi: 10.1051/0004-6361/201322068
- 387 Astropy Collaboration, Price-Whelan, A.,
- 388 Sip\Hocz, B., et al. 2018, AJ, 156, 123,
- 389 doi: 10.3847/1538-3881/aabc4f
- 390 Cooley, J. W., & Tukey, J. W. 1965, Math.
- ³⁹¹ Comput., 19, 297, doi: 10.2307/2003354
- 392 Jakobsen, P., Ferruit, P., Alves de Oliveira, C.,
- ³⁹³ et al. 2022, A&A, 661, A80,
- 394 doi: 10.1051/0004-6361/202142663
- ³⁹⁵ JWST User Documentation website. 2016.
- 396 https://jwst-docs.stsci.edu/
- 397 jwst-near-infrared-spectrograph/
- ³⁹⁸ nirspec-observing-strategies

- 399 Loose, M., Farris, M. C., Garnett, J. D., Hall, D.
- ⁴⁰⁰ N. B., & Kozlowski, L. J. 2003, Proc SPIE,
 ⁴⁰¹ 4850, 867
- 402 NASA JWST website. 2023. https://webb.nasa.
- 403 gov/content/forScientists/publications.html
- 404 Rauscher, B. J. 2015, PASP, 127, 1144,
- 405 doi: 10.1086/684082
- 406 Rauscher, B. J., Arendt, R. G., Fixsen, D. J.,
- 407 et al. 2013, in Proc SPIE, ed. H. A. MacEwen &
- 408 J. B. Breckinridge, Vol. 8860, International
- 409 Society for Optics and Photonics (SPIE),
- 410 886005, doi: 10.1117/12.2025053
- 411 Rauscher, B. J., Arendt, R. G., Fixsen, D. J.,
- ⁴¹² et al. 2017, PASP, 129, 105003,
- 413 doi: 10.1088/1538-3873/aa83fd